Publications


29. Purification of functional Plasmodium falciparum tubulin allows for the identification of parasite-specific microtubule inhibitors. Hirst WG, Fachet D, Kuropka B, Weise C, Saliba K and Reber S (2022). Current Biology 32, 1–8, February 28, 2022.

* Highlighted in Trends in Parasitology: McInally SG & Dawson SC. (2022). Affinity-purified Plasmodium tubulin provides a key reagent for antimalarial drug development. Trends in Parasitology, Vol 38, 5, p. 347-348.


28. Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling. Kletter T, Reusch S, Cavazza T, Dempewolf N, Tischer C and Reber S (2021). J Cell Biol. 2022 Jan 3;221(1):e202106170.


27. Purification of functional Plasmodium falciparum tubulin allows for the identification of parasite-specific microtubule inhibitors. Hirst WG, Fachet D, Kuropka B, Weise C, Saliba K and Reber S (2021). BioRxiv


26. Volumetric morphometry reveals mitotic spindle width as the best predictor of spindle scaling. Kletter T, Reusch S, Dempewolf N, Tischer C and Reber S (2021). BioRxiv


25. The Xenopus spindle is as dense as the surrounding cytoplasm. Biswas A, Kim K, Cojoc G, Guck J and Reber S (2021). Developmental Cell 56, 967–975, April 5, 2021.

*  Preview in Developmental Cell  "Local body weight measurement of the spindle" by Masahito Tanaka and Yuta Shimamoto


24. Affinity-Purification of Label-free Tubulins from Xenopus Egg Extracts. Reusch S, Biswas A, Hirst WG and Reber S (2020). STAR Protocols 1, 100151.



22. In Vitro Reconstitution and Imaging of Microtubule Dynamics by Fluorescence and Label-free Microscopy. Hirst WG, Kiefer C, Abdosamadi MK, Schäffer E and Reber S (2020). STAR Protocols 1, 100177.


21. Differences in Intrinsic Tubulin Dynamic Properties Contribute to Spindle Length Control in Xenopus Species.* Hirst WG, Biswas A, Mahalingan KK and Reber S. (2020).  Curr Biol. Volume 30, Issue 11, 8 June 2020, Pages 2184-2190.e5.

* Dispatch in Current Biology  by Dan Levy: Tubulin Contributes to Spindle Size Scaling


20. The effects of proliferation status and cell cycle phase on the responses of single cells to chemotherapy. Granada AE, Jiménez A, Stewart-Ornstein J, Blüthgen N, Reber S, Jambhekar A and Lahav G (2020).  Mol Biol Cell. 2020 Apr 1;31(8):845-857.



18. MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules. Kapoor V, Hirst WG, Hentschel C, Preibisch S and  Reber S (2019).  Sci Rep. 2019 Mar 7;9(1):3794.


17. The centrosome protein AKNA regulates neurogenesis via microtubule organization. Camargo Ortega G, Falk S, Johansson PA, Peyre E, Broix L, Sahu SK, Hirst WG, Schlichthaerle T ...  Geerlof A, Reber S, Tiwari VK, Huttner WB, Wilsch-Bräuninger M, Nguyen L, Götz M (2019).  Nature. 2019 Mar;567(7746):113-117.


16. Intracellular Scaling Mechanisms. Reber S and Goehring NW (2015).  Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a019067.


15. Emergent Properties of the Metaphase Spindle. Reber S and Hyman AA (2015). Cold Spring Harb Perspect Biol doi:10.1101/cshperspect.a015784.


14. On spindle length and shape. Reber S Cell News 2013/04.


13. XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules. Reber S, Baumgart J, Widlund PO, Pozniakovsky A, Howard J, Hyman AA and Jülicher F (2013). Nat Cell Biol. 2013 Sep;15(9):1116-22.


12. GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration. Scolz M, Widlund PO, Piazza S, Bublik DR, Reber S, Peche LY, Ciani Y, Hubner N, Isokane M, Monte M, Ellenberg J, Hyman AA, Schneider C, Bird AW (2012). PLoS One. 2012;7(12):e51259.


11. One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Widlund PO, Podolski M, Reber S, Alper J, Storch M, Hyman AA, Howard J, Drechsel DN (2012). Mol Biol Cell. 23(22):4393-401.

* Highlighted by the Faculty of 1000 as having ‘game-changing potential’.


10. Samurai sword sets spindle size. Reber S and Hyman AA (2011). Cell. 9;147(6):1224-5.


9. Cytoplasmic self-organization of internal membranes, microtubule-and actin-cytoskeleton inside microfluidics generated droplets. Tang, S, Renz M, Driscoll M, Reber S, Nguyen A, Daniels B and Lippincott-Schwartz J (2011). Mol Biol Cell, 22: 8120.


8. Isolation of centrosomes from cultured cells. Reber S (2011). Methods Mol Biol.777:107-16.


7. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Widlund PO, Stear JH, Pozniakovsky A, Zanic M, Reber S, Brouhard GJ, Hyman AA, Howard J (2011). Proc Natl Acad Sci U S A. 15;108(7):2741-6


6. Quantitative analysis of conditional gene inactivation using rationally designed, tetracycline-controlled miRNAs. Berger SM, Pesold B, Reber S, Schönig K., Berger AJ, Weidenfeld I. and Bartsch D. (2010). Nucleic Acids Res, 38(17), e168-e168.


5. CaM kinase II initiates meiotic spindle depolymerization independently of APC/C activation. Reber S, Over S, Kronja I, Gruss OJ (2008). J Cell Biol. 183(6):1007-17


4. EML3 is a nuclear microtubule-binding protein required for the correct alignment of chromosomes in metaphase. Tegha-Dunghu J, Neumann B, Reber S, Krause R, Erfle H, Walter T, Held M, Rogers P, Hupfeld K, Ruppert T, Ellenberg J, Gruss OJ (2008). J Cell Sci. 121(Pt 10):1718-26.


3. Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast. Taxis C, Maeder C, Reber S, Rathfelder N, Miura K, Greger K, Stelzer EH, Knop M (2006). Traffic. 7(12):1628-42.

* Highlighted by the Faculty of 1000.


2. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E,

Schiebel E, Knop M (2004). Yeast. 21(11):947-62


1. Function of the yeast spindle pole body during meiotic cell differentiation. Moreno-Borchart AC, Finkbeiner MG, Maier P,  Reber S and Knop M. (2003). Cell Motil Cytoskel, 54,(2)165-165.


IRI for the Life Sciences | Humboldt-Universität zu Berlin |

Haus 18 | Philippstr. 13 | 10115 Berlin

office@iri-lifesciences.de

Humboldt University
IRI for the Life Sciences